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MODIFIED LEUNG-GRIFFITHS EQUATION FOR DESCRIBING THE 

THERMODYNAMIC PROPERTIES OF A CO2--Ne SOLUTION NEAR THE 

CRITICAL POINT OF CO2 VAPORIZATION 

V. F. Kukarin, N. V. Kuskova, 
V. G. Martynets, E. V. Matizen, 
and A. G. Sartakov* 

UDC 530.1:536.71 

A scaling equation of state is proposed, allowing for the asymmetry of the actual 
liquids and their nonasymptotic behavior with greater distance from the critical 
point. Experimental data for C02--Ne solutions near the critical point of C02 
vaporization are approximated with this equation. 

Binary solutions near the critical points of vaporization of the pure solvent have a 
number of characteristic properties. Even at very low concentrations there is a region of 
temperatures and pressures at which molecules of the dissolved substance interact with each 
other so strongly that the solution becomes essentially nonideal. The compressibility of the 
system and the derivative of the concentration of the component with respect to its chemical 
potential increase strongly in the critical region, which leads to peculiarities of the 
kinetic properties such as diffusion and thermal conductivity (thermal diffusivity) and to an 
increase in fluctuations of concentration and density, while the partial molar volume of the 
solvent can even assume negative values [i]. The complexity of the description of critical 
phenomena in such solutions is due primarily to the existence of two strongly fluctuating 
order parameters, connected with the density and concentration. At the same time, the 
situation is simplified to a certain extent by the presence in this region of an additional 
small parameter -- the concentration of the dissolved substance. The latter made it possible 
in [2, 3] to prapose equations of state of the type of a Landau expansion in powers of the 
concentration and the departures of the temperature and density from the critical values for 
a pure solvent, as well as an equation of state based on the fluctuation theory of phase 
transitions of the second kind, from which the renormalization of the critical indices 
follows [4]. 

Several equations of state for the description of the thermodynamic properties of a 
binary solution in the region near the entire critical line of vaporization have also been 
proposed up to now. These are, primarily, the van der Waals equation of state [5] and the 
Leung--Griffiths [6] and Kiselev [7] equations. 

The CO2--Ne solution near the critical point of CO2 was investigated for the further 
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TABLE I. Coefficients of the Equation of State (i) for CO2-- 
Ne Solutions 

Pc, MPa 
A T , MPa/~ 

A N, MPa 
ATp. 10 ~, MPa.m 3/K'kg 

ANp , MPa'm a /kg 
Ao~. lO s, MPa'm 9 ]kg3 

7,38609+__0,00333 
O, 16228+0,00341 
43,361___0,214 
3,530• 

O, 1557__0,0034 
0,76_+ I, 14 

AT~. IOa MPa/OK2 
A~ ~.10~ MPa'm6/~ 

Ip ' 

ANT , , MPa/~ 

ANp~. 10 ~, MPa.m 6 / k g  2 

c~, MPa 

1,628~0,719 
8,74!5,76 

0 
2,351!0,628 

0,010898 

development of the problem of an adequate description of the thermodynamic properties of 
binary solutions near the critical point of vaporization of the solvent. Experimental P-~--T--N 
data for this solution were obtained by the procedure described earlier [8]. We only explain 
that the measurements were made in a variable-volume piezometer with windows for observation 
of the phase separation. To eliminate the gravitational effect and rapidly bring the 
investigated solution to thermodynamic equilibrium, the piezometer was equipped with a magnetic 
stirrer. The pressure was measured with a piston-load manometer with an error of 0.01 MPa, 
while its variation relative to the critical value was measured with a far higher accuracy, 
0.00025 MPa. The temperature was measured with a platinum resistance thermometer with an 
error of 0.OI~ while its variation relative to the critical temperature was measured to 
within 0.0005~ The error in determining the density of the solution was 1 kg/m3, while the 
error in determining the concentration was from 0.008 to 0.02 mole % Ne. We investigated 19 
solutions with different concentrations and obtained 462 points in P-~--T--N space in the 
ranges of temperatures of 302-309.5~ of densities of 392-568 kg/m ~, of concentrations of 
0-5.076 mole % Ne, and of pressures of 7.2-9.7 MPa. The experimental data obtained are pre- 
sented in [9] in the form of tables. 

For the preliminary treatment of the experimental data, we used an equation of state 
based on the assumption that the thermodynamic potential is analytic [i0]: 

P = P~ + AT AT + ANN + AT~ATA9 + AN~NA9 + Ao~Ag~-k 

.q_Ar~AT 2 ~ AT~ATA9 ~ + ANTNAT + ANgiNAl.  (1 )  

To describe the asymmetry of an actual solution, Eq. (i) contains additional terms in compari- 
son with the equations of state proposed earlier [2]. A detailed investigation of the sig- 
nificance of the different terms in Eq. (i) was made in [9]. The best approximation of the 
experimental data corresponds to the values of the coefficients presented in Table i. The 
confidence intervals are determined by the combined confidence region of variation of the 
parameters for the 0.68 confidence level (confidenc~ probability). For the independent de- 
termination of the confidence intervals of each parameter separately, their values approxi- 
mately correspond to 0.99 confidence [ii]. The addition of asymmetric terms to the 
equations of state proposed earlier [2] leads to a pronounced decrease in the departures of 
the experimental points from the calculated values. Nevertheless, an analysis of these de- 
partures shows that they continue to have a systematic character, and consequently, despite 
the relatively small error of approximation (~0.1%), Eq. (I) cannot be considered adequate to 
the experimental data. The inadequacy evidently is a consequence of the fact that this equa- 
tion is based on the assumption of the absence of peculiarities in the behavior of the ther- 
modynamic quantities near the critical point, whereas numerous experiments confirm the exist- 
ence of singularities due to anomalous fluctuations in concentration and density [12]. 
Equation (i), obtained within the framework of self-consistent field theory, is still dis- 
tinguished by comparative simplicity and has a relatively small approximation error (~0.1%), 
which permits its use as an interpolation equation for the calculation of certain thermodynamic 
properties of the C02--Ne binary solution in the above-indicated region of variation of the 
parameters of state. 

To obtain an adequate description of the properties of binary solutions in the investi- 
gated region of state we used the hypothesis of isomorphism of the fluctuation theory of 
phase transitions [4], the essence of which, as is well known, consists in the assumption 
that the peculiarities of the behavior of the thermodynamic potential of a system are retained 
upon the introduction of additional degrees of freedom (the concentration in our case) if the 
fields associated with these variables (the chemical potential) are fixed. The above-mentioned 
equations of state of [6] and [7] were proposed on the basis of this hypothesis. However, 
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the equation of [6], satisfactorily describing the ~He--~He solution near the critical line 
of vaporization, and the equation of [7] yield a low accuracy of approximation in the case of 
solutions of the C02--inert-gas type if one does not introduce a comparatively large number 
of parameters (fitting terms) into the regular parts of the equation of state. Concerning 
the equation of state from [7], it should be mentioned that it practically consists of a 
series of separate equations, each of which describes the P--p--T dependence of a solution with 
a given concentration, and therefore it is ill suited for determining such dependences for 
solutions with arbitrary concentrations. 

The assumption was made that the necessity of introducing a large number of fitting param- 
eters is a reflection more of the nonasymptotic behavior of the singular parts than of the 
regular ones, and of the asymmetry, inherent to the solvent, with respect to the behavior of 
the thermodynamic functions of the Ising model (of a magnetic substance). Thus, for an ade- 
quate approximation one must allow for the nonasymptotic behavior and (correctly) the asym- 
metry. For the solution of this problem, terms were added to the equation of state by a method 
similar to that used earlier to refine the equation of state of a pure liquid [13]. As the 
start we used the Leung--Griffiths equation under the assumption that its singular part, with 
the addition of nonasymptotic terms, can be written in parametric form in the isomorphic 
variables hl, h2, AI, and A2, 

h~ = Arv+~.0 (1 - -  0~'), ( 2 )  

h~. = r (1 - -  B~0"~), ( 3 )  

A~ = gr~ 0 Eg r.~+aq ~ (0), (4) 
A 

A~ = Agr i-~ (So + s ~ 0  ~) + EgH'-~+~Qo, ( 5 )  

w h e r e  B ~ = ( ? - -  2~) /? ( I  213); so = ? ( ? - -  1)/2B~o:(l - - a ) ;  s~=:--?(1--2f~)/2e; Qo "= - - ? ( ? +  A)/2B~( 1 - - ~ + A ) ;  

(o) = 0 [1 - -  B~0 ~- (1 - -  2~)1 

1 + 0 ~ [B ~ (2? + 2~ - -  1) - -  al + mB= (a - -  2? - -  21~) 

Using Eqs. (2)-(5), one can find an expression for the thermodynamic potential ~, which is de- 
fined by the equation 

dn = Aflh 1 -[- Aflh2, ~ = Agr 2-~ (Zo + z~O ~ + z~09 + Egr2-~+A(Po+p~O~') �9 (6) 

H e r e  z0 = (? - -  26 --- y~zB2)/2B~oc (1 - -  a)(2 - -  e) ,  z~ = (y + ~ - -  3/2)/~, z2 :---- [~B 2 (2? + 26 - -  1) - -  ? + 2~1/2B~ (1 - -  ~), 
Po = - -  (?+~)/2B~ ( 2 " ~ - A ) : •  (1 - -  ~ + A), a n d  P2 = (1 - -  2~)/2 (1 - -  a + A )  T h e  f o l l o w i n ~  n e w  v a r i a b l e s  

w e r e  i n t r o d u c e d  i n  [ 6 ]  t o  d e s c r i b e  a t w o - c o m p o n e n t  s y s t e m :  v = 1/RTe-- 1/RT, ~ = C]exp (~h/RT)/[Clexp 
(N/RT) + C~ exp (~6RT)], h = In [C~ exp (~{RT) + C2 exp (g6RT)]--H (L ~ )  The  f u n c t i o n  H ( ~ ,  T) i s  c h o s e n  
i n  t h e  f o r m  o f  a p o l y n o m i a l  o f  g a n d  z i n  s u c h  a way  t h a t  t h e  f i e l d  h e q u a l s  z e r o  o v e r  t h e  
e n t i r e  t w o - p h a s e  e q u i l i b r i u m  s u r f a c e  a n d  o n  t h e  c r i t i c a l  i s o c h o r s  i n  t h e  o n e - p h a s e  r e g i o n :  

H (r ~) = bo + b ~  + b2~ (1 - -  $) + (go + &r -c. (7) 

For the conversion from the isomorphic variables T, h, and ~ we used the relations [12] 
= ao(h2--bhl) and h = hl. The expression for H(~, T) was simplified somewhat: H(.$, ~)=b 0 + b1~ 

+ b ~ . ~ ( t - - $ )  + got  . The variable ~ remained unchanged. The use of such transformations 
enabled us to write the equation of state in the form 

P = m ( ~ ,  h, ~)RT, ( 8 )  

p = w ~ g + A p ,  (9) 

T = [R (ao + cfi~ - -  ao-c)] - i ,  (io) 

(ii) 
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Here the subscript denotes differentiation of these quantities with respect to the corre- 
sponding variable, ~ ----- ~reg _~ ~sing ~re~ = c (~) ~- d0~ -~ 10~-f (~) h, ~osing ~ f ($) ~, C (~) -- CO -~ C~, 

f(~) ---- fO ~-f~, and &p is defined, in accordance with [12], by the expression Ap =f(~)(A~-~bAe), 
i.e., 

P----(f~ l + g r ~ O -  Eg ] �9 A - r~+~q~ (0) + bAgr ~-~ (So + %0 ~) . (12)  

Thus, the pressure, density, temperature, and concentration of the system are determined by 
the three parameters r, 0, and ~, varied in the intervals of O~r-~<oo,--1~0~-bl, and 0~I. 

As we see, Eqs. (8)-(11) are a modification of the Leung-Griffiths equations [6]. By 
contrast with the latter, in them asymmetry is taken into account by the method proposed in 
[12], and nonasymptotic terms are added. The regular parts of the equations of [6] were also 
subjected to certain unessential changes. In particular, since the data approximated by this 
equation were obtained near the critical point of the pure solvent, the regular part of the 
potential ~ was chosen in the form of the simplest polynomials of 5, permitting a decrease in 
the number of fitting parameters. 

The equation of state (8)-(11) was used to approximate experimental P-n0--T--N data for 
a CO2--Ne binary gas solution [9, 17] o Some of the coefficients of the equation were determined 
directly from the experimentally obtained critical values of the pressure, temperature, and 
density of pure CO2:a0 = 3.95445"10 -4 kmole/kJ, co = 2.92030 kmole/m s, f0 = 10.6346 kmole/m s. 

At present it is assumed that the critical indices of classical liquids coincide with 
the indices of the Ising three-dimensional, one-component model [14, 15], and therefore in 
approximating the experimental data by the equation of state (8),(11) obtained, we fixed the 
theoretical values of the critical indices B = 0.325, y = 1.24 [12], and 5 = 0.45 [16]. More- 
over, varying the indices ~, u and A within fairly wide limits showed that this does not 
result in a significant improvement in the description of the experimental data. And since 
parameters B, y, and A appearing nonlinearly in the equation considerably increase the calcu- 
lation time, fixing them seemed fully justified. The remaining coefficients of the equation 
of state (8)-(11) were determined by the method of minimizing the sum of the squares of the 
departures of the pressure, density, temperature and concentration from their experimental 
values: 

M 

qb --_ Z [q~i-}- W~ (Ne--N~ �9 )~], 
(13) 

where r r~,eO~)=Wp[P~--P(r r,; 01)]~q-Wo[~-p(~, r,, 0,)12 +Wr[/ f - -T($~,  r,, 0,)]~§ 
[NT--N(~ , ,  ri, 0~)] 2 . The v a l u e s  o f  t h e  p a r a m e t e r s  g i ,  r i ,  and  e i f o r  t h e  i - t h  p o i n t  w e r e  
determined by minimizing ~i(~i, ri, ~i) with respect to these parameters. The values of the 
weights Wp, Wp, WT, WN, and Q~were chosen in such a way that the contributions of the respective 
terms to the sum of the squares of the deviations were of the same order. The fitting values 
N~ were taken as constants for each concentration separately. Points from the one-phase 
region and points lying on the boundary curve and in the two-phase region took part in the 
treatment. 

The coefficients found by the method of least squares and their combined confidence 
intervals have the following values: g = 1.193• A = 6.26• E = --2.1• h =-0.050• 
0.076; ~l = 2.29• a1 = (6.82• -s kmole/kJ; cl = 34.7• 24 kmole/m3; do = (44.24• 
0.3)-103 kPa; I0 = (-4.9• kj2/kmole.m3; fi = 23.7• 3. The rms errors in 
approximating the pressure, density, temperature, and concentration by Eq. (8)-(11) are op = 
0.0015 MPa, Op = 0.005 kmole/m 3, o T = O.O031~ and o N = 0.02 mole % Ne. The combined con- 
fidence intervals weredetermined under the assumption of a parabolic dependence of the 
error functional (13) on the parameters being fitted, since there is considerable difficulty 
in finding the true dependence for a system of nonlinear equations with a large number of 
parameters. As a result, the confidence intervals evidently proved to be overstated. This 
is indicated by the fact that an attempt to approximate the experimental data by Eq. (8)-(11) 
without the terms containing, e.g., the parameters b and E led to a pronounced increase in 
the rms approximation errors, although the confidence intervals for some of these parameters 
proved to be larger than the very values of the parameters. 
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It must be noted that the accuracy of approximation of the experimental data by the 
equation of state proposed in this paper is higher than that by an equation of state of the 
Leontovich--Rozen type, and it approaches the accuracy in obtaining the experimental data with 
a relatively small number of varied parameters. In this respect the equation of state (8)- 
(ii) also differs advantageously from the equation proposed in [7], which is unsuited for 
finding the dependence of the thermodynamic quantities on the concentration and has an approxi- 
mation error comparable with the error of an equation of state of the Leontovich--Rozen type. 

NOTATION 

P, pressure, MPa; p, density, kg/m3; T, temperature, ~ N, concentration, molar fractions; 
~, rms error of approximation; AT, Ap, deviations of the temperature and density from the 
critical values for pure CO2; r and 8, Scofield "radial" and "angular" variables; g and A, 
constants of the Scofield equation; E, constant to the nonasymptotic term; ao and b, con- 
stants of the connections between the isomorphic variables hl and h2 and the variables h and 
T; R, gas constant; ~, thermodynamic potential; T, h,~, variables of the parametric equation 
of state; DI and ~2, chemical potentials of the first and second components: CI and C2 
constants of the connections between ~ and BI and ~2. Critical indices: ~, heat capacity; y, 
compressibility; ~, boundary curve; A, nonasymptotic part. 
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